Structure and electronic structure of van der Waals interfaces at a Au(1 1 1) surface covered with a well-ordered molecular layer of n-alkanes

Applied Surface Science(2021)

引用 2|浏览12
暂无评分
摘要
Abstract The structure and electronic structure of a system comprising molecular layers of n-alkane adsorbed on Au(1 1 1) were investigated to understand the origin of the interfacial electric dipole layer. These alkane molecules are inert and thus van der Waals (vdW) interaction is the primary adsorptive force. Although these vdW interfaces are regarded as ideal physical adsorption systems unlikely to chemically interact with the metal surface, a large interfacial electric dipole layer over 1 eV is formed. It is important to elucidate the mechanism underlying the generation of such large dipole layers to understand the electrode interface in organic semiconductor devices. Thus, this paper elucidates the details of the vdW interface, in particular between tetratetracontane (TTC) and Au(1 1 1). First, the mechanism of growth of the TTC layer up to monolayer thickness was revealed using a low-energy electron-diffraction method. Second, the interface states were newly formed, as determined using angle-resolved photoelectron spectroscopy, X-ray photoemission spectroscopy, and near-edge absorption fine-structure spectroscopy. Our findings indicate, unexpectedly, that a relatively strong inter-orbital interaction governs this vdW interface, similar to a weak chemisorption system rather than a physisorption system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要