Extraocular muscle function is impaired in ryr3−/− mice

The Journal of General Physiology(2019)

引用 0|浏览1
暂无评分
摘要
Calcium is an ubiquitous second messenger mediating numerous physiological processes, including muscle contraction and neuronal excitability. Ca2+ is stored in the ER/SR and is released into the cytoplasm via the opening of intracellular inositol trisphosphate receptor and ryanodine receptor calcium channels. Whereas in skeletal muscle, isoform 1 of the RYR is the main channel mediating calcium release from the SR leading to muscle contraction, the function of ubiquitously expressed ryanodine receptor 3 (RYR3) is far from clear; it is not known whether RYR3 plays a role in excitation–contraction coupling. We recently reported that human extraocular muscles express high levels of RYR3, suggesting that such muscles may be useful to study the function of this isoform of the Ca2+ channel. In the present investigation, we characterize the visual function of ryr3−/− mice. We observe that ablation of RYR3 affects both mechanical properties and calcium homeostasis in extraocular muscles. These changes significantly impact vision. Our results reveal for the first time an important role for RYR3 in extraocular muscle function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要