Gasoline compression ignition (GCI) combustion of pump-grade gasoline fuel under high compression ratio diesel engine

Transportation engineering(2021)

Cited 10|Views0
No score
Abstract
In this paper, gasoline compression ignition (GCI) combustion was investigated under a high compression ratio (CR = 22:1) system that was developed for a high-efficiency heavy-duty diesel engine platform. The experiment includes Single-Cylinder Engine (SCE) testing of two combustion systems with distinctively different piston designs: wave and stepped-lip. Validated Computational Fluid Dynamics (CFD) simulations provide insights on the in-cylinder phenomenon under GCI combustion. While early spray/flame and ignition characteristics were driven mainly by nozzle configuration in each combustion system, flame-wall and flame-flame interaction during the late-cycle combustion process were strongly affected by the piston's wall-flow-guided feature. The wave piston is unique with a recirculation flow, also known as radial mixing zone (RMZ). RMZ results from in-cylinder flow interactions of adjacent flames, which play a crucial part in enhancing late-cycle soot oxidation.Meanwhile, the stepped-lip piston splits flame jet (at the time of impingement) upward and downward to head and bowl, respectively. Overall, the stepped-lip piston showed lower heat loss due to reduced spray penetration. In contrast, wave piston demonstrated superior end-cycle mixing, reducing soot emissions. Both systems provided similar indicated thermal efficiency (ITE). Comparison between diesel and GCI shows that GCI can reach diesel-like efficiency while maintaining low soot emissions. However, there is a remaining challenge in GCI combustion with higher carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions than diesel combustion.
More
Translated text
Key words
High efficiency,Low emissions,Gasoline compression ignition,High compression ratio,Combustion
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined