谷歌浏览器插件
订阅小程序
在清言上使用

Particle size effect on water vapor sorption measurement of organic shale: One example from Dongyuemiao Member of Lower Jurassic Ziliujing Formation in Jiannan Area of China

Rui Yang, Aoqi Jia,Qinhong Hu, Xiaowen Guo, Mengdi Sun

Advances in Geo-Energy Research(2020)

引用 26|浏览11
暂无评分
摘要
Shale formations generally contain a certain amount of water, and the occurrence of water can strongly affect the free gas content and gas storage capacity within shale. Although some studies have conducted water vapor adsorption tests to understand the water adsorption behavior and water-shale interactions, surprisingly the influence of grain size on water vapor sorption of shale is poorly understood. In this work, water vapor adsorption experiments on one Dongyuemiao shale from Ziliujing Formation in Jiannan Area, with different particle sizes (8-12 mesh, 20-35 mesh, 35-80 mesh, 80-200 mesh, and > 200 mesh) are conducted over a wide relative humidity (RH) range (5%-95%) using a gravimetric method. The influence of particle size on water vapor adsorption measurement is investigated and the optimal particle size is suggested for water vapor experiment. Results show that the maximum uptake of water vapor adsorption is smaller in larger particle sized sample, which is related to the variation of accessible pores. Monolayer adsorption capacity obtained from Guggenheim-Anderson-de Boer modelling tends to increase as the particle size increases, suggesting a stronger water vapor adsorption potential. Comparative studies show that 20-35 mesh is suggested to be the optimum particle size for comparative purpose. The quantity of adsorption on the primary and secondary sites is comparable or equals at a RH range of approximately 60%-80%. When RH value is smaller than 60%, the quantity of water vapor adsorption on the primary site dominates, while adsorption uptake on the secondary site plays a dominant role when RH value is greater than 80%. When particle size increases, water vapor adsorptions on the primary sites increases slightly, while a decrease trend is observed for water vapor adsorption on secondary sites.
更多
查看译文
关键词
Organic shale,particle size effect,water vapor sorption,areal hysteresis index,GAB model,dent model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要