Deep dielectric-based water saturation in freshwater and mixed salinity environments

SPWLA 62nd Annual Online Symposium Transactions(2021)

引用 4|浏览3
暂无评分
摘要
It is desirable to evaluate the possibility of developing a deeper dielectric permittivity based Sw measurement for various petrophysical applications. The low frequency, (< MHz), resistivity-based method for water saturation (Sw) evaluation is the desired method in the industry due to its deepest depth of investigation (DOI, up to 8 ft). However, the method suffers from higher uncertainty when formation water is very fresh or has mixed salinity. Dielectric permittivity and conductivity dispersion have been used to estimate Sw and salinity. The current dielectric dispersion tools, however, have very shallow DOI due to their high measurement frequency up to GHz, which most likely confines the measurements within the near wellbore mud-filtrate invaded zones. In this study, effective medium-model simulations were conducted to study different electromagnetic (EM) induced-polarization effects and their relationships to rock petrophysical properties. Special attention is placed on the complex conductivity at 2 MHz due to its availability in current logging tools. It is known that the complex dielectric saturation interpretation at the MHz range is quite difficult due to lack of fully understood of physics principles on complex dielectric responses, especially when only single frequency signal is used. Therefore, our study is focused on selected key parameters: water-filled porosity, salinity, and grain shape, and their effects on the modeled formation conductivity and permittivity. To simulate field logs, some of the petrophysical parameters mentioned above are generated randomly within expected ranges. Formation conductivity and permittivity are then calculated using our petrophysical model. The calculated results are then mixed with random noises of 10% to make them more realistic like downhole logs. The synthetic conductivity and permittivity logs are used as inputs in a neural network application to explore possible correlations with water-filled porosity. It is found that while the conductivity and permittivity logs are generated from randomly selected petrophysical parameters, they are highly correlated with water-filled porosity. Furthermore, if new conductivity and permittivity logs are generated with different petrophysical parameters, the correlations defined before can be used to predict water-filled porosity in the new datasets. We also found that for freshwater environments, the conductivity has much lower correlation with water-filled porosity than the one derived from the permittivity. However, the correlations are always improved when both conductivity and permittivity were used. This exercise serves as proof of concept, which opens an opportunity for field data applications. Field logs confirm the findings in the model simulations. Two propagation resistivity logs measured at 2 MHz are processed to calculate formation conductivity and permittivity. Using independently estimated water-filled porosity, a model was trained using a neural network for one of the logs. Excellent correlation between formation conductivity and permittivity and water-filled porosity is observed for the trained model. This neural network- generated model can be used to predict water content from other logs collected from different wells with a coefficient of correlation up to 96%. Best practices are provided on the performance of using conductivity and permittivity to predict water-filled porosity. These include how to effectively train the neural network correlation models, general applications of the trained model for logs from different fields. With the established methodology, deep dielectric-based water saturation in freshwater and mixed salinity environments is obtained for enhanced formation evaluation, well placement, and reservoir saturation monitoring.
更多
查看译文
关键词
mixed salinity environments,freshwater,water,dielectric-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要