Device control software design for the active support system of GMT primary mirror segments

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series(2020)

Cited 0|Views0
No score
Abstract
The Primary Mirror Device Control System (M1 DCS) is one of the many Device Control Systems (DCS) included in the Giant Magellan Telescope (GMT) control system and is responsible for the overall control and operation of the GMT primary mirror segments. The primary mirror is composed of seven 8.4m diameter segments, six off-axis and one in the center. The active support system of each segment comprises 170 support actuators for the off-axis segments and 154 actuators for the center segment to control the mirror figure, and 6 hardpoints to control the six degrees of freedom of rigid body motion. The software design follows a component model-based architecture, implemented using the GMT core software frameworks. Software components of the M1 DCS are specified using a custom Domain Specific Language (DSL) and inherit all key features of the core components such as communication ports, default behaviors, telemetry, logs, alarms, faults, state machines and engineering user-interface without the need of a separate implementation. The communication between the real time software and the controlled devices is implemented by an EtherCAT Fieldbus in a ring topology. This master-slave standard protocol enables the control system to reach 100 Hz closed loop rate for active support control. This paper describes the software of the M1 DCS, the tests performed with different software and hardware simulators, and the strategy to ensure software readiness with the final optical mirror.
More
Translated text
Key words
software, device control, primary mirror, GMT
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined