Photoevaporation of Water Dominated Exoplanet Atmospheres

Bulletin of the American Astronomical Society(2020)

引用 0|浏览3
暂无评分
摘要
The atmospheres of close-in, low-mass exoplanets are extremely vulnerable to the effects of stellar UV to X-ray radiation. Photoevaporation can significantly ablate planetary atmospheres or even strip them entirely, potentially rendering a planet inhabitable. Existing hydrodynamical studies of this important atmospheric mass loss mechanism have mainly considered hydrogen/helium dominated atmospheres. Currently, the effect of more complex chemistry on photoevaporative mass loss has only been the subject of a limited number of studies (e.g. Bolmont et al. 2017). In the era of more advanced exoplanet atmospheric observations, it is more important than ever to determine what, if any atmosphere, these planets may have been able to retain. Here, I present preliminary results of hydrodynamic simulations, showing how the atmosphere of a low-mass planet undergoing photoevaporation is affected by the inclusion of water.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要