谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Estrogen-induced hsa-miR-10b-5p is elevated in T cells from patients with systemic lupus erythematosus and downregulates splicing factor SRSF1

Arthritis & Rheumatism(2021)

引用 13|浏览4
暂无评分
摘要
OBJECTIVE Autoimmune diseases affect women disproportionately more than men. Estrogen is implicated in immune cell dysfunction, yet its precise molecular roles are not fully known. We recently identified new roles for serine/arginine-rich splicing factor 1 (SRSF1) in T cell function and autoimmunity. SRSF1 levels are decreased in T cells from patients with systemic lupus erythematosus (SLE) and are associated with active disease and comorbidity. However, the molecular mechanisms that control SRSF1 expression are unknown. Srsf1 messenger RNA (mRNA) has a long 3'-untranslated region (3'-UTR), suggesting posttranscriptional control. This study was undertaken to investigate the role of estrogen and posttranscriptional mechanisms of SRSF1 regulation in T cells and SLE. METHODS In silico bioinformatics analysis of Srsf1-3'-UTR revealed multiple microRNA (miRNA; miR)-binding sites. Additional screening and literature searches narrowed down hsa-miR-10b-5p for further study. Peripheral blood T cells from healthy individuals and SLE patients were evaluated for mRNA and miRNA expression by quantitative reverse transcription-polymerase chain reaction, and SRSF1 protein levels were assessed by immunoblotting. T cells were cultured with β-estradiol, and transient transfections were used to overexpress miRNAs. Luciferase assays were used to measure 3'-UTR activity. RESULTS We demonstrated that estrogen increased hsa-miR-10b-5p expression in human T cells, and hsa-miR-10b-5p down-regulated SRSF1 protein expression. Mechanistically, hsa-mir-10b-5p regulated SRSF1 posttranscriptionally via control of its 3'-UTR activity. Importantly, hsa-miR-10b-5p expression levels were elevated in T cells from healthy women compared to healthy men and also elevated in T cells from SLE patients. CONCLUSION We identified a previously unrecognized molecular link between estrogen and gene regulation in immune cells, with potential relevance to systemic autoimmune disease.
更多
查看译文
关键词
systemic lupus erythematosus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要