Chrome Extension
WeChat Mini Program
Use on ChatGLM

Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance

APPLIED ENERGY(2022)

Cited 40|Views3
No score
Abstract
The integration of photovoltaic (PV) systems and electric vehicles (EVs) in the built environment, including at workplaces, has increased significantly in the recent decade and has posed new technical challenges for the power system, such as increased peak loads and component overloading. Several studies show that improved matching between PV generation and EV load through both optimal sizing and operation of PV-EV systems can minimize these challenges. This paper presents an optimal PV-EV sizing framework for workplace solar powered charging stations considering load matching performances. The proposed optimal sizing framework in this study uses a novel score, called self-consumption-sufficiency balance (SCSB), which conveys the balance between self-consumption (SC) and self-sufficiency (SS), based on a similar principle as the F1-score in machine learning. A high SCSB score implies that the system is close to being self-sufficient without exporting or curtailing a large share of local production. The results show that the SCSB performance tends to be higher with a larger combined PV-EV size. In addition to presenting PV-EV optimal sizing at the workplace charging station, this study also assesses a potential SC and SS enhancement with optimal operation through smart charging schemes. The results show that smart charging schemes can significantly improve the load matching performances by up to 42.6 and 40.8 percentage points for SC and SS, respectively. The smart charging scheme will also shift the combined optimal PV-EV sizes. Due to its simplicity and universality, the optimal sizing based on SCSB score proposed in this study can be a benchmark for future studies on optimal sizing of PV-EV system, or distributed generation-load in general.
More
Translated text
Key words
Photovoltaic systems,Electric vehicle charging,Workplace charging station,Optimal sizing,Smart charging,PV self-consumption
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined