Geostationary earth observation system concept by 3.6-meter synthetic aperture imaging

Sensors, Systems, and Next-Generation Satellites XXV(2021)

引用 2|浏览1
暂无评分
摘要
This paper presents the results of a conceptual study of an Earth observation system. The new system represents a technical breakthrough in larger telescope aperture, which is necessary to improve spatial resolution. The system makes it possible to improve temporal resolution while maintaining a practical spatial resolution. The observation system was designed to have a latency of 30 minutes from the observation request until data delivery. The mission study emphasized the system's need to immediately assess the situation when a natural disaster occurs and thus reduce human suffering. Due to the required spatial resolution, the optical system needed to have a 3.6 m aperture. A synthetic aperture optical sensor with a segmented primary mirror was investigated and adopted. The segmented-mirror optical system was the most technically challenging and was investigated using a full-scale one-segment prototype to evaluate the feasibility and identify technical risks. This paper presents the tentative design of the sensor and satellite system and reports on the technical demonstration and the proposed geostationary observation system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要