Polymyxin B Reduces Brain Injury in Ischemic Stroke Rat Through a Mechanism Involving Targeting ESCRT-III Machinery and RIPK1/RIPK3/MLKL Pathway

Journal of cardiovascular translational research(2022)

Cited 3|Views12
No score
Abstract
Endosomal sorting complex required for transport III (ESCRT-III) machinery is a key component to counteract the mixed lineage kinase domain-like pseudokinase (MLKL)-induced plasma membrane broken in cells undergoing necroptosis. Based on the bioinformatics analysis, polymyxin B, a polypeptide antibiotic, is predicted to simultaneously interact with ESCRT-III subunits and necroptosis-relevant proteins. This study aims to explore whether polymyxin B could reduce necroptosis in the stroke rat brain via enhancing the ESCRT-III machinery and/or suppressing the RIPK1/RIPK3/MLKL pathway. The stroke rats showed evident brain injury, concomitant with the downregulation of ESCRT-III subunits and the upregulation of necroptosis-relevant proteins. Post-ischemic administration of polymyxin B could alleviate the brain injury, accompanied by restoration of the levels of ESCRT-III subunits and suppression of necroptosis-relevant proteins. And, polymyxin B exerted similar effects in hypoxia-treated HT22 cells. We conclude that polymyxin B can reduce necroptosis in the stroke rat brain via enhancing the ESCRT-III machinery and suppressing the RIPK1/RIPK3/MLKL pathway simultaneously. Graphical abstract
More
Translated text
Key words
Brain,ESCRT-III,Ischemic stroke,Necroptosis,Polymyxin B
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined