Photosensitive-Stamp-Inspired Scalable Fabrication Strategy of Wearable Sensing Arrays for Noninvasive Real-Time Sweat Analysis

ANALYTICAL CHEMISTRY(2022)

引用 12|浏览0
暂无评分
摘要
Wearable sweat sensing is essential to the development of personalized health monitoring in a noninvasive manner with molecular-level insight. Hence, there is an increasing demand for convenient, facile, and efficient fabrication of wearable sensing arrays. Inspired by a photosensitive stamp (PS), we present herein a simple, low-cost, and eco-friendly vacuum filtration-transfer printing method (termed PS-VFTP) for the scalable preparation of single-walled carbon nanotube (SWCNT) based flexible electrode arrays. This method can economically yield customized flexible SWCNT arrays with praiseworthy performance, such as high reproducibility, precision, uniformity, conductivity, and mechanical stability. In addition, the flexible SWCNT arrays can be easily functionalized into high-performance electrochemical sensors for the simultaneous monitoring of sweat metabolites (glucose, lactate) and electrolytes (Na+, K+). The integration of wearable sensing arrays with a signal acquisition and processing circuit system in the intelligent wearable sensors empowers them to realize noninvasive, real-time, and in situ sweat analysis during exercise. More meaningfully, such a PS-VFTP strategy can be easily expanded to the economical manufacturing of other flexible electronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要