miR-195 regulates intestinal epithelial restitution after wounding by altering actin-related protein-2 translation

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY(2022)

引用 4|浏览3
暂无评分
摘要
Early gut epithelial restitution reseals superficial wounds after acute injury, but the exact mechanism underlying this rapid mucosal repair remains largely unknown. MicroRNA-195 (miR-195) is highly expressed in the gut epithelium and involved in many aspects of mucosal pathobiology. Actin-related proteins (ARPs) are key components essential for stimulation of actin polymerization and regulate cell motility. Here, we reported that miR-195 modulates early intestinal epithelial restitution by altering ARP-2 expression at the translation level. miR-195 directly interacted with the ARP-2 mRNA, and ectopically expressed miR-195 decreased ARP-2 protein without effect on its mRNA content. In contrast, miR-195 silencing by transfection with anti-miR-195 oligo increased ARP-2 expression. Decreased ARP-2 levels by miR-195 overexpression were associated with an inhibition of early epithelial restitution, as indicated by a decrease in cell migration over the wounded area. Elevation of cellular ARP-2 levels by transfection with its transgene restored cell migration after wounding in cells overexpressing miR-195. Polyamines were found to decrease miR-195 abundance and enhanced ARP-2 translation, thus promoting epithelial restitution after wounding. Moreover, increasing the levels of miR-195 disrupted F-actin cytoskeleton organization, which was prevented by ARP2 overexpression. These results indicate that miR-195 inhibits early epithelial restitution by decreasing ARP-2 translation and that miR-195 expression is negatively regulated by cellular polyamines.
更多
查看译文
关键词
actin-related proteins (ARPs), gut epithelial restitution, microRNAs, mucosal injury, polyamines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要