Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells

ANALYTICAL CHEMISTRY(2022)

Cited 27|Views37
No score
Abstract
The discrimination between dead and live cells is crucial for cell viability evaluation. Carbon dots (CDs), with advantages like simple and costeffective synthesis, excellent biocompatibility, and high photostability, have shown potential for realizing selective live/dead cell staining. However, most of the developed CDs with the live/dead cell discrimination capacity usually have low photoluminescence quantum yields (PLQYs) and excitation wavelength-dependent fluorescence emission (which can cause fluorescence overlap with other fluorescent probes and make dual-color live/dead staining impossible), and hence, developing ultrabright CDs with excitation wavelength-independent fluorescence emission property for live/dead cell discrimination becomes an important task. Here, using a one-pot hydrothermal method, we prepared ultrasmall (similar to 1.6 nm), ultrabright (PLQY: (similar to 78%), and excitation wavelength-independent sulfur-doped carbon dots (termed S-CDs) using rose bengal and 1,4-dimercaptobenzene as raw materials and demonstrated that the S-CDs could rapidly (similar to 5 min) and accurately distinguish dead cells from live ones for almost all the cell types including bacterial, fungal, and animal cells in a wash-free manner. We confirmed that the S-CDs could rapidly pass through the dead cell surfaces to enter the interior of the dead cells, thus visualizing these dead cells. In contrast, the S-CDs could not enter the interior of live cells and thus could not stain these live cells. We further verified that the S-CDs presented better biocompatibility and higher photostability than the commercial live/dead staining dye propidium iodide, ensuring its bright application prospect in cell imaging and cell viability assessment. Overall, this work develops a type of CDs capable of realizing the live/dead cell discrimination of almost all the cell types (bacterial, fungal, and animal cells), which has seldom been achieved by other fluorescent nanoprobes.
More
Translated text
Key words
carbon,cells,bengal-derived,sulfur-doped
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined