Lead phosphate deposition in porous media and implications for lead remediation.

Water research(2022)

Cited 6|Views3
No score
Abstract
Phosphate addition is commonly applied as an effective method to remediate lead contaminated sites via formation of low solubility lead phosphate solids. However, subsequent transport of the lead phosphate particles may impact the effectiveness of this remediation strategy. Hence, this study investigates the mechanisms involved in the aggregation of lead phosphate particles and their deposition in sand columns as a function of typical water chemistry parameters. Clean bed filtration theory was evaluated to predict the particle deposition behavior, using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate particle-substrate interactions. The observed particle deposition was not predictable from the primary energy barrier in clean bed filtration models, even in simple monovalent background electrolyte (NaNO3), because weak deposition in a secondary energy minimum prevailed even at low ionic strength, and ripening occurred at ionic strengths of 12.5 mM or higher. For aged (aggregated) suspensions, straining also occurred at 12.5 mM or higher. Aggregation and deposition were further enhanced at low total P/Pb ratios (i.e., P/Pb = 1) and in the presence of divalent cations, such as Ca2+ (≥ 0.2 mM), which resulted in less negative particle surface potentials and weaker electrostatic repulsion forces. However, the presence of 5 mg C/L of humic acid induced strong steric or electrosteric repulsion, which hindered particle aggregation and deposition even in the presence of Ca2+. This study demonstrates the importance of myriad mechanisms in lead phosphate deposition and provides useful information for controlling water chemistry in phosphate applications for lead remediation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined