Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys

crossref

引用 0|浏览0
暂无评分
摘要
Gamma-prime strengthened Co–Al–W-based superalloys offer a unique combination of weldability, mechanical strength, creep resistance, and environmental resistance at temperature—leading many to consider the system as an alternative to nickel-base superalloys for future generation turbine engine hardware. However, little information exists regarding the deformation processing required to turn these novel alloys into useable product forms with appropriate microstructure refinement. Supersolvus thermomechanical processing sequences were successfully demonstrated using right-cylindrical upset specimens for two wrought γ′-strengthened cobalt-base superalloys at industrially relevant temperatures and deformation rates. Hot flow behavior and microstructure evolution were quantitatively characterized and compared to available information on a legacy nickel-base system, Waspaloy. Further, density functional theory was used to explore the compositional dependency of the intrinsic material properties influencing single-phase hot working behavior of model Ni–Al binary and Co–Al–W ternary systems. The apparent similarity in the supersolvus thermomechanical processing behavior of Co–Al–W-base systems and their two-phase γ–γ′ Ni-base counterparts suggests conventional pathways, models, and equipment may be leveraged to speed transition and implementation of wrought Co–Al–W-base alloys for components where their properties may be advantageous.
更多
查看译文
关键词
Cobalt-base, Supersolvus, Wrought processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要