Dynamic Analysis and Life Estimation of the Artificial Hip Joint Prosthesis

Advances in intelligent systems and computing(2019)

Cited 1|Views2
No score
Abstract
While discussing the hip joint failure, material selection and apposite dimension of the femoral head are a significant concern for the artificial hip replacement. In this context, an attempt was made to optimize both ball head and socket material from different combinations like femoral head (metal)—acetabular liner (Polyethylene) and femoral head (ceramic)—acetabular liner (ceramic) in consideration of a different set of femoral ball head size of 28, 30 and 32 mm. The material and femoral head size were optimized in the perspective of minimum stress that eventually enhances the prosthesis life and minimizes the wear of counter bodies. The hip joint prosthesis was designed in CATIA V5 R17 followed by finite element analysis (FEA) was performed in ANSYS 17.2. Dynamic FEA was performed when the 100 kg human in jogging. A theoretical optimization established the combination of ceramic–ceramic articulating body consists of 30.02 mm ID acetabular liner—30 mm OD femoral head made of zirconia toughened alumina (ZTA) experience less stress and deformation that eventually exhibit very low wear rate per cycle of jogging. This design exhibits 0.93 mm wear depth after 15 years of activity; however, similar theoretical analysis can be done under different degree of dynamic motions. The proposed material and design combination has excellent potential for the development of artificial hip joint prosthesis.
More
Translated text
Key words
Total hip replacement (THR), Prosthesis, Dynamic analysis, ZTA, Wear
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined