Physics Opportunities with PROSPECT-II

arxiv(2022)

引用 0|浏览23
暂无评分
摘要
The PROSPECT experiment has substantially addressed the original 'Reactor Antineutrino Anomaly' by performing a high-resolution spectrum measurement from an enriched compact reactor core and a reactor model-independent sterile neutrino oscillation search based on the unique spectral distortions the existence of eV$^2$-scale sterile neutrinos would impart. But as the field has evolved, the current short-baseline (SBL) landscape supports many complex phenomenological interpretations, establishing a need for complementary experimental approaches to resolve the situation. While the global suite of SBL reactor experiments, including PROSPECT, have probed much of the sterile neutrino parameter space, there remains a large region above 1 eV$^2$ that remains unaddressed. Recent results from BEST confirm the Gallium Anomaly, increasing its significance to $\sim 5\sigma$, with sterile neutrinos providing a possible explanation of this anomaly. Separately, the MicroBooNE exclusion of electron-like signatures causing the MiniBooNE low-energy excess does not eliminate the possibility of sterile neutrinos as an explanation. Focusing specifically on the future use of reactors as a neutrino source for beyond-the-standard-model physics and applications, higher-precision spectral measurements still have a role to play. These recent results have created a confusing landscape which requires new data to disentangle the seemingly contradictory measurements. To directly probe $\overline{\nu}_{e}$ disappearance from high $\Delta m^2$ sterile neutrinos, the PROSPECT collaboration proposes to build an upgraded and improved detector, PROSPECT-II. It features an evolutionary detector design which can be constructed and deployed within one year and have impactful physics with as little as one calendar year of data.
更多
查看译文
关键词
physics,opportunities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要