Spatial Multiplex In Situ Tagging (MIST) Technology for Rapid, Highly Multiplexed Detection of Protein Distribution on Brain Tissue.

ANALYTICAL CHEMISTRY(2022)

引用 3|浏览1
暂无评分
摘要
Highly multiplexed analysis of biospecimens significantly advances the understanding of biological basics of diseases, but these techniques are limited by the number of multiplexity and the speed of processing. Here, we present a rapid multiplex method for quantitative detection of protein markers on brain sections with the cellular resolution. This spatial multiplex in situ tagging (MIST) technology is built upon a MIST microarray that contains millions of small microbeads carrying barcoded oligonucleotides. Using antibodies tagged with UV cleavable oligonucleotides, the distribution of protein markers on a tissue slice could be "printed" on the MIST microarray with high fidelity. The performance of this technology in detection sensitivity, resolution, and signal-to-noise level has been fully characterized by detecting brain cell markers. We showcase the codetection of 31 proteins simultaneously within 2 h, which is about 10 times faster than the other immunofluorescence-based approaches of similar multiplexity. A full set of computational toolkits was developed to segment the small regions and identify the regional differences across the entire mouse brain. This technique enables us to rapidly and conveniently detect dozens of biomarkers on a tissue specimen, and it can find broad applications in clinical pathology and disease mechanistic studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要