Nonlinear Dynamic and Bilinear Fatigue Performance of Composite Marine Risers in Deep Offshore Fields

Volume 2A: Structures, Safety, and Reliability(2020)

引用 1|浏览1
暂无评分
摘要
Abstract Composite materials have drawn considerable consideration from the offshore business, basically because of their high explicit quality. Notwithstanding weight decrease, composites offer extra advantages, for example, fatigue resistance, damping, and thermal (protection) properties, and high erosion resistance. As a part of design procedure there are requirements of mechanical strength based on criteria referring to failure modes, such as rupture by over loading, fatigue failures, buckling or an unstable fracture. Three dimensional nonlinear assessment of riser is carried out in time domain using ABAQUS/Aqua. The response time histories so obtained are used for the study of fatigue safety assessment of riser. It is based on a bi-linear approach to model fatigue crack growth and incorporates a failure limit to describe the interaction between rupture and plastic failure. Using Monte Carlo Simulation, tests of fatigue reliability and fatigue crack size evolution are obtained. It is observed that bilinear S-N curve and crack growth models leads to higher estimate of fatigue life. Sensitivity behavior pertinent to limit state adopted has been thoroughly examined. These outcomes implicate assessment of components of the marine structures to ensure minimization of the surprises due to wide scatter of the fatigue phenomenon in marine environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要