Chrome Extension
WeChat Mini Program
Use on ChatGLM

Tailoring the Electrochemical and Morphological Properties of Electropolymerized and Dropcast Reduced Graphene Oxide-Poly(3,4-ethylene dioxythiophene):polystyrenesulfonate Transducers for Ion-Selective Sensors

The 1st International Electronic Conference on Biosensors(2020)

Cited 2|Views1
No score
Abstract
Fabrication of ion-selective sensors for continuous measurement in fluids depends on understanding the electrochemical and morphological properties of transducers. Electropolymerized nanomaterials essentially offer stable transducers that can reduce measurement drifts. This study aims to elucidate the electrochemical and morphological characteristics of electropolymerized reduced graphene oxide stabilized in polystyrenesulfonate and poly(3,4ethylenedioxythiophene):polystyrenesulfonate composites on screen-printed carbon electrodes (rGO:PSS-PEDOT:PSS/SPCEs) using scanning electron microscopy (SEM) and cyclic voltammetry (CV) in 0.1 M potassium ferricyanide (K3Fe(CN)6) solution. We fabricated the rGO:PSSPEDOT:PSS/SPCEs by two different techniques: electropolymerization deposition (EPD) and dropcasting (DC). Results revealed smaller peak-to-peak potential separation (∆Ep) of 360 mV for EPD rGO:PSS-PEDOT:PSS/SPCEs, compared to 510 mV for the DC rGO:PSS-PEDOT:PSS/SPCEs. A smaller ∆Ep indicates higher reversibility and faster electron-transfer rate at the electrode-analyte interface. SEM results showed EPD rGO:PSS-PEDOT:PSS/SPCEs have the roughest surface among electrodes; homogeneous globular structures with diameter range of 1.4–5.3 μm covered the electrode surface. In terms of electrode integrity in fluids, cracks can be seen on the surface of DC PEDOT:PSS/SPCEs after undergoing CV in 0.1 M K3Fe(CN)6, whereas rGO:PSS-PEDOT:PSS/SPCEs for both deposition methods maintained their integrity. Globular structures of rGO:PSS-PEDOT:PSS using EPD methods remained after undergoing CV. The results suggest that EPD serves as a potential method to fabricate a stable transducer for ion-selective sensing. This study aims to elucidate performance of nanocomposites via EPD methods, to develop stable ion-selective sensors for physiological and environmental applications.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined