Characterising Interactions between Influenza A Virus and Respiratory Syncytial Virus during In Vitro Coinfection

Viruses 2020—Novel Concepts in Virology(2020)

引用 0|浏览2
暂无评分
摘要
Influenza A virus (IAV) and respiratory syncytial virus (RSV) are important respiratory pathogens that share common epidemiological features and cellular tropism within the respiratory tract. This gives rise to the potential for biological interactions between IAV and RSV during coinfection of hosts. Virus–virus interactions are increasingly recognised for their contribution to viral dynamics during infection, however, the molecular processes underpinning these interactions are unknown. Here, we developed an in vitro coinfection system to characterise the infection dynamics of IAV (A/Puerto Rico/8/34, H1N1) and RSV (A2) in single virus infection or coinfection in lung epithelial cells, with the aim to identify biological processes that drive virus–virus interactions during coinfection. We compared viral replication kinetics at different multiplicities of infection and observed that RSV replication was inhibited during coinfection with IAV, whilst IAV replication was facilitated by coinfection. To further characterise IAV/RSV interactions, we determined the relative proportions of single virus infected or coinfected cells during early and late timepoints post-infection and observed differences in expression of viral proteins between single and coinfected states. Additionally, cell viability was measured determine differences in viral-induced cytopathic effect. Compared with RSV infection, cell death is induced at earlier timepoints post IAV infection and coinfection, indicating that different cellular processes are initiated in response to infection. These studies highlight that both competitive and facilitative ecological interactions occur between IAV and RSV during coinfection and shed light on sources of potential interactions at the cellular and molecular level.
更多
查看译文
关键词
respiratory syncytial virus,influenza virus,vitro
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要