Edge Defects Promoted Oxidation of Monolayer WS2 Synthesized on Epitaxial Graphene

The Journal of Physical Chemistry C(2020)

引用 18|浏览0
暂无评分
摘要
Two-dimensional semiconductors are gaining increasing interest for their potential application in several fields. In particular, when combined with graphene into vertical van der Waals heterostructures, they have demonstrated unique properties, such as large spin–orbit coupling at the valence band maximum and ultrafast charge transfer. An understanding of the WS2 stability on epitaxial graphene in ambient conditions is crucial for the development of potential applications. In this work, we study the environmental aging related degradation of WS2 monolayers directly synthesized on top of epitaxial graphene. We experimentally demonstrate that the oxidation of the WS2 monolayers on epitaxial graphene starts from the flake edges, being attributed to a local high concentration of defects. The oxidation leads to the complete deterioration of the semiconducting material in less than 120 days. In addition, we demonstrate that the oxidation mechanism is accelerated on epitaxial graphene in comparison to that on insulating sapphire substrate. First-principles theoretical analysis reveals that the oxidation mechanism is strongly promoted by the presence of sulfur vacancies and is further accelerated by transfer of electron density from the substrate, whereas it is slowed down by depletion of electron density from the support. Our exhaustive approach sheds light on the oxidative process promoted by defects and not self-limited to the oxidation of the monolayer edges.
更多
查看译文
关键词
epitaxial graphene,monolayer ws<sub>2</sub>,oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要