Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?

Atmospheric Chemistry and Physics(2020)

Cited 8|Views1
No score
Abstract
To better understand the formation and the oxidation pathways leading to gypsum-forming “black crusts” and investigate their bearing on the whole atmospheric SO2 cycle, we measured the oxygen (δ17O, δ18O, and Δ17O) and sulfur (δ33S, δ34S, δ36S, Δ33S, and Δ36S) isotopic compositions of black crust sulfates sampled on carbonate building stones along a NW–SE cross section in the Parisian basin. The δ18O and δ34S values, ranging between 7.5 ‰ and 16.7±0.5 ‰ (n=27, 2σ) and between −2.66 ‰ and 13.99±0.20 ‰, respectively, show anthropogenic SO2 as the main sulfur source (from ∼2 % to 81 %, average ∼30 %) with host-rock sulfates making the complement. This is supported by Δ17O values (up to 2.6 ‰, on average ∼0.86 ‰), requiring > 60 % of atmospheric sulfates in black crusts. Negative Δ33S and Δ36S values between −0.34 ‰ and 0.00±0.01 ‰ and between −0.76 ‰ and -0.22±0.20 ‰, respectively, were measured in black crust sulfates, which is typical of a magnetic isotope effect that would occur during the SO2 oxidation on the building stone, leading to 33S depletion in black crust sulfates and subsequent 33S enrichment in residual SO2. Except for a few samples, sulfate aerosols mostly have Δ33S values > 0 ‰, and no processes can yet explain this enrichment, resulting in an inconsistent S budget: black crust sulfates could well represent the complementary negative Δ33S reservoir of the sulfate aerosols, thus solving the atmospheric SO2 budget.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined