Impact of TiO2 layer formed on CuxS Films on the Photoelectrochemical Water Reduction Process

Journal of The Electrochemical Society(2020)

Cited 1|Views0
No score
Abstract
Solar radiation is the main source of renewable energy capable of satisfying the increasing energy demand without contributing to climate changes using fossil fuels. Energy harvesting from solar radiation requires innovation in materials with appropriate functional properties to produce chemical energy. This study aims to contribute in that sense. It reports the synthesis and characterization of photocathodes for hydrogen evolution based on TiO2/CuxS films formed on FTO glass. CuxS is prepared by electrodeposition of copper, followed by chalcogenide formation through immersion in a sulfide source solution and then modified by heat treatment. A TiO2 layer is deposited on CuxS film to favor its stability and charge carrier separation process. The calcination of bare CuxS film causes the formation of a mixture of copper oxides. TiO2 film acts as an effective protector, preserving a larger proportion of Cu chalcogenide species by preventing the complete oxidation, without considerably varying the reducing power of photogenerated electrons in the films. TiO2 layer favors the absorption of low energy photons and increases the photocurrent, diminishing electron-hole recombination probability.
More
Translated text
Key words
tio2 layer
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined