Human NOTCH4 Is a Key Target of RUNX1 in Megakaryocytic Differentiation

Blood(2016)

Cited 0|Views2
No score
Abstract
Megakaryocytes (MK), which produce platelets, play important roles in blood coagulation and hemostasis. The master transcription factor RUNX1 regulates lineage-specific transcriptional targets and key signaling pathways, and is known to be essential for megakaryopoiesis. Mono-allelic RUNX1 mutations lead to familial platelet disorder (FPD), which is characterized by thrombocytopenia and abnormal platelet functions. A high percentage (~50%) of these FPD patients later develop myelodysplastic syndromes and acute myeloid leukemia. The exact mechanisms underlying deregulated megakaryopoiesis in FPD remain unclear, partially due to the lack of an adequate experimental model mimicking the human disease. For example, engineered laboratory mice and zebrafish with only one copy of the Runx1 gene do not develop bleeding disorders or leukemia. Using an in vitro hematopoietic differentiation system, we found that megakaryocytic differentiation from FPD-derived induced pluripotent stem cells (iPSCs) were defective (Connelly et al., 2014). Targeted correction of the mutated RUNX1 allele by genome editing restored the MK production and functions, validating the central role of RUNX1 in megakaryopoiesis (Connelly et al., 2014). In this new study, we pursued the hypothesis that direct target genes regulated by RUNX1 play important roles in human megakaryopoiesis.
More
Translated text
Key words
runx1
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined