FUN3D and USM3D analysis of the Propulsion Aerodynamic Workshop 2018 S-duct Test Case

AIAA Propulsion and Energy 2019 Forum(2019)

Cited 1|Views2
No score
Abstract
This work presents the results of Fun3D and USM3D analyses that were performed for the 4th AIAA Propulsion Aerodynamics Workshop (PAW). The PAW workshop is separated into three sections that focus on internal duct flows, nozzle flows and a special topic. This paper focuses on the internal duct flow section of PAW04 while an accompanying paper discusses the analyses performed for the nozzle portion. For the internal duct flow section, the PAW04 participants were provided with the two configurations consisting of an S-duct with and without aerodynamic interface plane (AIP) rake legs modeled. The participants were asked to perform a grid refinement study as well as a turbulence model study for the configuration with the rake legs. The analyses discussed here were performed on custom grids developed under the guidelines of the workshop. Additionally, the paper discusses the development and use of flow controllers for matching the desired flow characteristics. The results show that both solvers do well for predicting internal flow characteristics of the S-duct based on direct comparison with the experimental data. However, the CFD-to-CFD comparison proved to be more challenging due to the localized occurrence of supersonic flow near the rake legs when using the mass flow controller. A turbulence model study was performed to compare the two-equation SST model to the SA-QCR model. The results show that although the turbulence model does affect the solution, it makes a minimal impact on pressure recovery and inlet distortion intensity for this case. Suggestions for future workshops include gridding guidelines similar to those employed for the Drag Prediction Workshop series for the grid refinement study and a time accuracy study.
More
Translated text
Key words
propulsion aerodynamic workshop,usm3d analysis,s-duct
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined