谷歌浏览器插件
订阅小程序
在清言上使用

Molekuláris Citogenetikai Vizsgálatok Baranya És Tolna Megye Plazmasejtes Myelomában Szenvedő Betegein

Orvosi hetilap(2019)

引用 0|浏览9
暂无评分
摘要
Abstract: Introduction: Plasma cell myeloma is a hematological malignancy with heterogeneous genomic landscape and diverse clinical course. Recurrent chromosomal and subchromosomal aberrations commonly occur in this entity and are associated with the pathogenesis and progression of the disease. The identification of these alterations aids genetic characterization, classification and prognostication of patients. Aim: Molecular cytogenetic investigations of plasma cell myeloma patients treated at the University of Pécs Clinical Center and János Balassa County Hospital of Tolna County, Szekszárd, between 2005 and 2018 were evaluated in our study. Method: 231 patients were screened for genetic aberrations using fluorescence in situ hybridization. Translocations involving the immunoglobulin heavy chain gene, losses of 1p and 17p chromosome arms, gains of 1q chromosome arm and unbalanced aberrations of chromosome 13 were investigated. Losses and gains of 1p, 1q, 5q, 12p, 13q, 16q and 17p chromosome arms were analyzed using multiplex ligation-dependent probe amplification in 42 patients. During the investigated period, 116 bone marrow karyotyping was also performed. Results: In total, 233 genetic aberrations were identified using our targeted approaches; the frequency of specific aberrations correlated with data of the recent literature. Concordance of results gained by fluorescence in situ hybridization and multiplex ligation-dependent probe amplification was 96.2% by analyzing the same chromosome arms. The latter technique revealed 21 additional genetic aberrations in 16/42 patient samples (38%) as compared to fluorescence in situ hybridization. Conclusions: Our results suggest that the combined application of the two molecular cytogenetic methods may facilitate a more detailed characterization of genetic aberrations of plasma cell myeloma patients in Hungary. Orv Hetil. 2019; 160(24): 944–951.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要