Cell-Specific Metabolic Reprogramming of Tumors for Bioactivatable Ferroptosis Therapy

ACS NANO(2022)

引用 21|浏览7
暂无评分
摘要
Ferroptosis is a nonapoptotic iron-dependent cell death pathway with a significant clinical potential, but its translation is impeded by lack of tumor-specific ferroptosis regulators and aberrant tumor iron metabolism. Herein, we report a combinational strategy based on clinically tested constituents to selectively induce ferroptosis in metabolically reprogrammed tumor cells through cooperative GPX4-inhibition and ferritinophagy-enabled Fe2+ reinforcement. Azido groups were first introduced on tumor cells using biocompatible long-circulating self-assemblies based on polyethylene glycol-disulfide-N-azidoacetyl-D-mannosamine via metabolic glycoengineering. The azido-expressing tumor cells could specifically react with dibenzocyclooctyne-modified disulfide-bridged nanoassemblies via bioorthogonal click reactions, where the nanoassemblies were loaded with ferroptosis inducer RSL3 and ferritinophagy initiator dihydroartemisinin (DHA) and could release them in a bioresponsive manner. DHA-initiated ferritinophagy could degrade intracellular ferritin to liberate stored iron species and cooperate with the RSL3-mediated GPX4-inhibition for enhanced ferroptosis therapy. This tumor-specific ferroptosis induction strategy provides a generally applicable therapy with enhanced translatability, especially for tumors lacking targetable endogenous receptors.
更多
查看译文
关键词
bioorthogonal tumor targeting, cancer therapy, ferritinophagy, ferroptosis, metabolic labeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要