Metabolomic profiling of human pluripotent stem cell differentiation into lung progenitors

iScience(2022)

Cited 6|Views10
No score
Abstract
Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.
More
Translated text
Key words
Cell biology,Stem cells research,Metabolomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined