Modeling of the Temperature Field in the Magnetic Hyperthermia

Numerical Simulations in Engineering and Science(2018)

引用 2|浏览0
暂无评分
摘要
The numerical and/or analytical modeling of the temperature field developed by the magnetic systems in the external alternating magnetic fields is essential in the Magnetic Hyperthermia. Optimization of the all parameters involved in the burning process of the malignant tissues can be realized more efficiently using a mathematical model. The analytical models can be used for the validation of any numerical complex models of the heating processes. This work focuses on the parameters which influences the therapeutic temperature field developed by the magnetic systems within the malignant tissues when the magnetic field is applied. An analytical model was developed to predict and control the bioheat transport within a malignant tissue. This model was compared with a numerical model which was developed in the same conditions of the thermal analysis. Infusion of a diluted suspension of magnetic nanoparticles (MNP) into liver tissue was modeled using the Darcy’s equation. The MNP concentration and the temperature field were computed for different parameters as: (i) ferrofluid infusion rates, (ii) particle zeta potential and (iii) magnetic field parameters. The convection-diffusion-deposition of the particles within tissues was considered in this analysis. This study indicates the essential role of these parameters to predict accurately the hyperthermic temperature field. The model presented in this paper predicts the optimum MNP dosage and the temperature at every point within the malignant tissue.
更多
查看译文
关键词
magnetic hyperthermia,temperature field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要