Bubble Planner: Planning High-speed Smooth Quadrotor Trajectories using Receding Corridors.

IEEE/RJS International Conference on Intelligent RObots and Systems (IROS)(2022)

引用 23|浏览18
暂无评分
摘要
Quadrotors are agile platforms. With human experts, they can perform extremely high-speed flights in cluttered environments. However, fully autonomous flight at high speed remains a significant challenge. In this work, we propose a motion planning algorithm based on the corridor-constrained minimum control effort trajectory optimization (MINCO) framework. Specifically, we use a series of overlapping spheres to represent the free space of the environment and propose two novel designs that enable the algorithm to plan high-speed quadrotor trajectories in real-time. One is a sampling-based corridor generation method that generates spheres with large overlapped areas (hence overall corridor size) between two neighboring spheres. The second is a Receding Horizon Corridors (RHC) strategy, where part of the previously generated corridor is reused in each replan. Together, these two designs enlarge the corridor spaces in accordance with the quadrotor's current state and hence allow the quadrotor to maneuver at high speeds. We benchmark our algorithm against other state-of-the-art planning methods to show its superiority in simulation. Comprehensive ablation studies are also conducted to show the necessity of the two designs. The proposed method is finally evaluated on an autonomous LiDAR-navigated quadrotor UAV in woods environments, achieving flight speeds over 13.7 m/s without any prior map of the environment or external localization facility.
更多
查看译文
关键词
agile platforms,autonomous LiDAR-navigated quadrotor UAV,bubble planner,cluttered environments,corridor size,corridor spaces,corridor-constrained minimum control effort trajectory optimization framework,flight speeds,free space,fully autonomous flight,generated corridor,high-speed flights,high-speed quadrotor trajectories,high-speed smooth quadrotor trajectories,human experts,neighboring spheres,overlapped areas,overlapping spheres,receding corridors,receding horizon corridors strategy,sampling-based corridor generation method,state-of-the-art planning methods,woods environments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要