谷歌浏览器插件
订阅小程序
在清言上使用

On Development of a Semi-Mechanistic Wall Boiling Model

Volume 8B: Heat Transfer and Thermal Engineering(2013)

引用 10|浏览0
暂无评分
摘要
In modern cooling systems the requirement of higher performance demands highest possible heat transfer rates, which can be achieved by controlled nucleate boiling. Boiling based cooling systems are gaining attention in several engineering applications as a potential replacement of conventional single-phase cooling system. Although the controlled nucleate boiling enhances the heat transfer, uncontrolled boiling may lead to Dry Out situation, adversely affecting the cooling performance and may also cause mechanical damage due to high thermal stresses. Designing boiling based cooling systems requires a modeling approach based on detailed fundamental understanding of this complex two-phase heat and mass transfer phenomenon. Such models can help analyze different cooling systems, detect potential design flaws and carry out design optimization. In the present work a new semi-mechanistic wall boiling model is developed within commercial CFD solver ANSYS FLUENT. A phase change mechanism and wall heat transfer augmentation due to nucleate boiling are implemented in mixture multiphase flow framework. The phase change phenomenon is modeled using mechanistic evaporation-condensation model. Enhancement of wall heat transfer due to nucleate boiling is captured using 1D empirical correlation, modified for 3D CFD environment. A new method is proposed to calculate the local suppression of nucleate boiling based on the flow velocity, and hence this model can be applied to any complex shaped coolant passage. For different wall superheat, the wall heat fluxes predicted by the present model are validated against experimental data, in which 50-50 volume mixture of aqueous ethylene glycol (a typical anti-freeze coolant mixture) is used as working fluid. The validation study is performed in ducts of different sizes and shapes with different inlet velocities, inlet sub-cooling and operating pressures. The results are in good agreement with the experiments. This model is applied to a typical automobile Exhaust Gas Recirculation (EGR) system to study boiling heat transfer phenomenon and the results are presented.
更多
查看译文
关键词
Boiling Heat Transfer,Thermodynamic Modeling,Nucleate Boiling,Heat Transfer,Convective Heat Transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要