Lipoprotein Promotes Caveolin-1 and Ras Translocation to Caveolae

Arteriosclerosis, Thrombosis, and Vascular Biology(2000)

Cited 50|Views0
No score
Abstract
Abstract —To explore the role of LDL in caveolin-Ras regulation in human endothelial cells (ECs), we incubated confluent human umbilical vein endothelial cells (HUVECs) with LDL. This resulted in a high steady-state caveolin-1 (Cav-1) expression at both the mRNA and protein levels. LDL exposure appeared not to regulate the abundance of Cav-1. Immunofluorescence staining showed that Cav-1 protein migrated from the cytoplasm to the cell membrane after LDL exposure. Cav-1 protein and cholesterol partitioned mainly into the caveola fractions, and LDL increased both Cav-1 and cholesterol in these fractions. Ras protein in caveola fractions was also increased by LDL. Increased Ras was detected in Cav-1 immunoprecipitated samples, and conversely, increased Cav-1 was found in Ras-immunoprecipitated samples. We also demonstrated LDL-increased Ras activity in HUVECs by measuring the GTP/GTP+GDP ratio of Ras with [ 32 P]orthophosphate labeling in the cells. Finally, we determined the binding of [ 3 H]-labeled free cholesterol and recombinant H-Ras to Cav-1 fusion proteins in vitro. Both cholesterol and Ras bound to full-length GST–Cav-1, scaffolding domain (61–101), and C-terminal (135–178) Cav-1 fusion peptides. Addition of cholesterol enhanced Ras binding to the full-length and scaffolding domain of Cav-1 but not to the C-terminal Cav-1. These findings strongly suggest a role for Cav-1 in cholesterol trafficking and cholesterol-mediated intracellular signaling, which may mediate EC activation by LDL.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined