谷歌浏览器插件
订阅小程序
在清言上使用

Exploiting Disk Layout and Block Access History for I/O Prefetch

Advanced Operating Systems and Kernel Applications(2010)

引用 1|浏览1
暂无评分
摘要
As the major secondary storage device, the hard disk plays a critical role in modern computer system. In order to improve disk performance, most operating systems conduct data prefetch policies by tracking I/O access pattern, mostly at the level of file abstractions. Though such a solution is useful to exploit application-level access patterns, file-level prefetching has many constraints that limit the capability of fully exploiting disk performance. The reasons are twofold. First, certain prefetch opportunities can only be detected by knowing the data layout on the hard disk, such as metadata blocks. Second, due to the non-uniform access cost on the hard disk, the penalty of mis-prefetching a random block is much more costly than mis-prefetching a sequential block. In order to address the intrinsic limitations of filelevel prefetching, we propose to prefetch data blocks directly at the disk level in a portable way. Our proposed scheme, called DiskSeen, is designed to supplement file-level prefetching. DiskSeen observes the workload access pattern by tracking the locations and access times of disk blocks. Based on analysis of the temporal and spatial relationships of disk data blocks, DiskSeen can significantly increase the sequentiality of disk accesses and improve disk performance in turn. We implemented the DiskSeen scheme in the Linux 2.6 kernel and we show that it can significantly improve the effectiveness of filelevel prefetching and reduce execution times by 20-53% for various types of applications, including grep, CVS, and TPC-H.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要