Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nitration of specific tyrosines in FoF1ATP synthase and activity loss in aging

American Journal of Physiology-Endocrinology and Metabolism(2010)

Cited 48|Views1
No score
Abstract
It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr345and Tyr368in the β-subunit of the mitochondrial FoF1-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristics of these Tyr make them suitable for a facilitated nitration (solvent accessibility, consensus sequence, and p Ka). Moreover, β-subunit nitration increased significantly with the age of the rats (from 4 to 80 weeks old) and correlated with decreased ATP hydrolysis and synthesis rates. Although its affinity for ATP binding was unchanged, maximal ATPase activity decreased between young and old rats by a factor of two. These changes directly impacted the available ATP concentration in vivo, and it was expected that they would affect multiple cellular ATP-dependent processes. For instance, at least 50% of available [ATP] in the liver of older rats would have to be committed to sustain maximal Na+-K+-ATPase activity, whereas only 30% would be required for young rats. If this requirement was not fulfilled, the osmoregulation and Na+-nutrient cotransport in liver of older rats would be compromised. On the basis of our studies, we propose that targeted nitration of the β-subunit is an early marker for nitrative stress and aging.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined