Quantitative trait loci affecting δ13c and response to differential water availibility in arabidopsis thaliana

Evolution(2005)

引用 2|浏览1
暂无评分
摘要
Phenotypic plasticity is an important response mechanism of plants to environmental heterogeneity. Here, we explored the genetic basis of plastic responses of Arabidopsis thaliana to water deficit by experimentally mapping quantitative trait loci (QTL) in two recombinant inbred populations (Cvi × Ler and Ler × Col). We detected genetic variation and significant genotype-by-environment interactions for many traits related to water use. We also mapped 26 QTL, including six for carbon isotope composition (δ13C). Negative genetic correlations between fruit length and fruit production as well as between flowering time and branch production were corroborated by QTL colocalization, suggesting these correlations are due to pleiotropy or physical linkage. Water-limited plants were more apically dominant with greater root:shoot ratios and higher δ13C (higher water-use efficiency) when compared to well-watered plants. Many of the QTL effects for these traits interacted significantly with the irrigation treatment, suggesting that the observed phenotypic plasticity is genetically based. We specifically searched for epistatic (QTL-QTL) interactions using a two-dimensional genome scan, which allowed us to detect epistasis regardless of additive genetic effects. We found several significant QTL-QTL interactions including three that exhibited environmental dependence. These results provide preliminary evidence for proposed genetic mechanisms underlying phenotypic plasticity.
更多
查看译文
关键词
arabidopsis,differential water availibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要