Chrome Extension
WeChat Mini Program
Use on ChatGLM

Production of High Levels of 3S,3 ' S-Astaxanthin in Yarrowia lipolytica via Iterative Metabolic Engineering

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2022)

Cited 24|Views9
No score
Abstract
Astaxanthin is a highly value-added keto-carotenoid compound. The astaxanthin 3S,3'S-isomer is more desirable for food additives, cosmetics, and pharmaceuticals due to health concerns about chemically synthesized counterparts with a mixture of three isomers. Biosynthesis of 3S,3'S-astaxanthin suffers from limited content and productivity. We engineered Yarrowia lipolytica to produce high levels of 3S,3'S-astaxanthin. We first assessed various beta-carotene ketolases (CrtW) and beta-carotene hydroxylases (CrtZ) from two algae and a plant. HpCrtW and HpCrtZ from Haematococcus pluvialis exhibited the strongest activity in converting beta-carotene into astaxanthin in Y. lipolytica. We then fine-tuned the HpCrtW and HpCrtZ transcriptional expression by increasing the rounds of gene integration into the genome and applied a modular enzyme assembly of HpCrtW and HpCrtZ simultaneously. Next, we rescued leucine biosynthesis in the engineered Y. lipolytica, leading to a five-fold increase in biomass. The astaxanthin production achieved from these strategies was 3.3 g/L or 41.3 mg/g dry cell weight under fed-batch conditions, which is the highest level reported in microbial chassis to date. This study provides the potential for industrial production of 3S,3'S-astaxanthin, and this strategy empowers us to build a sustainable biorefinery platform for generating other value-added carotenoids in the future.
More
Translated text
Key words
astaxanthin, yarrowia lipolytica, beta-carotene hydroxylase, beta-carotene ketolase
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined