Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity

Journal of Biological Chemistry(2022)

Cited 16|Views13
No score
Abstract
Despite the enormous successes of anti-PD-1/PD-L1 immunotherapy in multiple other cancer types, the overall response rates of breast cancer remain suboptimal. Therefore, exploring additional immune checkpoint molecules for potential cancer treatment is crucial. B7H3, a T-cell coinhibitory molecule, is specifically overexpressed in breast cancer compared with normal breast tissue and benign lesions, making it an attractive therapeutic target. However, the mechanism by which B7H3 contributes to the cancer phenotype is unclear. Here we show that the expression of B7H3 is negatively related to the number of CD8+ T cells in breast tumor sites. In addition, analysis of the differentially expressed B7H3 reveals that it is inversely correlated to autophagic flux both in breast cancer cell lines and clinical tumor tissues. Furthermore, block of autophagy by bafilomycin A1 (Baf A1) increases B7H3 levels and attenuates CD8+ T cell activation, while promotion of autophagy by V9302, a small-molecule inhibitor of glutamine metabolism, decreases B7H3 expression and enhances granzyme B (GzB) production of CD8+ T cells via regulation of reactive oxygen species (ROS) accumulation. We demonstrate that combined treatment with V9302 and anti-PD-1 monoclonal antibody (mAb) enhances antitumor immunity in syngeneic mouse models. Collectively, our findings unveil the beneficial effect of V9302 in boosting antitumor immune response in breast cancer and illustrate that anti-PD-1 together with V9302 treatment may provide synergistic effects in the treatment of patients insensitive to anti-PD-1 therapy.
More
Translated text
Key words
V9302,anti-PD-1 immunotherapy,B7H3,autophagy,CTLs activation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined