谷歌浏览器插件
订阅小程序
在清言上使用

Category-Specific Nuance Exploration Network for Fine-Grained Object Retrieval.

AAAI Conference on Artificial Intelligence(2022)

引用 8|浏览59
暂无评分
摘要
Employing additional prior knowledge to model local features as a final fine-grained object representation has become a trend for fine-grained object retrieval (FGOR). A potential limitation of these methods is that they only focus on common parts across the dataset (e.g. head, body or even leg) by introducing additional prior knowledge, but the retrieval of a fine-grained object may rely on category-specific nuances that contribute to category prediction. To handle this limitation, we propose an end-to-end Category-specific Nuance Exploration Network (CNENet) that elaborately discovers category-specific nuances that contribute to category prediction, and semantically aligns these nuances grouped by subcategory without any additional prior knowledge, to directly emphasize the discrepancy among subcategories. Specifically, we design a Nuance Modelling Module that adaptively predicts a group of category-specific response (CARE) maps via implicitly digging into category-specific nuances, specifying the locations and scales for category-specific nuances. Upon this, two nuance regularizations are proposed: 1) semantic discrete loss that forces each CARE map to attend to different spatial regions to capture diverse nuances; 2) semantic alignment loss that constructs a consistent semantic correspondence for each CARE map of the same order with the same subcategory via guaranteeing each instance and its transformed counterpart to be spatially aligned. Moreover, we propose a Nuance Expansion Module, which exploits context appearance information of discovered nuances and refines the prediction of current nuance by its similar neighbors, leading to further improvement on nuance consistency and completeness. Extensive experiments validate that our CNENet consistently yields the best performance under the same settings against most competitive approaches on CUB Birds, Stanford Cars, and FGVC Aircraft datasets.
更多
查看译文
关键词
Computer Vision (CV)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要