Chrome Extension
WeChat Mini Program
Use on ChatGLM

Architecting Hierarchical WO3 Agglomerates Assembled With Straight and Parallel Aligned Nanoribbons Enabling High Capacity and Robust Stability of Lithium Storage

FRONTIERS IN CHEMISTRY(2022)

Cited 5|Views2
No score
Abstract
The pursuit of electrochemical energy storage has led to a pressing need on materials with high capacities and energy densities; however, further progress is plagued by the restrictive capacity (372 mAh g(-1)) of conventional graphite materials. Tungsten trioxide (WO3)-based anodes feature high theoretical capacity (693 mAh g(-1)), suitable potential, and affordable cost, arousing ever-increasing attention and intense efforts. Nonetheless, developing high-performance WO3 electrodes that accommodate lithium ions remains a daunting challenge on account of sluggish kinetics characteristics and large volume strain. Herein, the well-designed hierarchical WO3 agglomerates assembled with straight and parallel aligned nanoribbons are fabricated and evaluated as an anode of lithium-ion batteries (LIBs), which exhibits an ultra-high capacity and excellent rate capability. At a current density of 1,000 mA g(-1), a reversible capacity as high as 522.7 mAh g(-1) can be maintained after 800 cycles, corresponding to a high capacity retention of similar to 80%, demonstrating an exceptional long-durability cyclic performance. Furthermore, the mechanistic studies on the lithium storage processes of WO3 are probed, providing a foundation for further optimizations and rational designs. These results indicate that the well-designed hierarchical WO3 agglomerates display great potential for applications in the field of high-performance LIBs.
More
Translated text
Key words
WO3,hierarchical structure,nanoribbons,lithium-ion batteries,high performances
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined