谷歌浏览器插件
订阅小程序
在清言上使用

Targeting Mitochondrial Large-Conductance Calcium-Activated Potassium Channel by Hydrogen Sulfide via Heme-Binding Site

JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS(2022)

引用 9|浏览14
暂无评分
摘要
Reperfusion together with the preceding ischemic period results in serious damage to brain and heart tissues. Activation of potassium channels from the inner mitochondrial membrane leads to cytoprotection during such events. The mitochondrial large-conductance calcium-activated potassium channel (mitoBK(ca)) is one of these cytoprotective channels. It was previously shown that BKca channels are blocked by heroin, which is present in excess during hemorrhage. In the experiments described in this work, we checked whether NaHS, known as a donor of gasotransmitter hydrogen sulfide (H2S), which can play an important role in cytoprotection, interacts with mitoBK(ca) channels. Indeed, using the biotin-switch method, it was found that mitoBK(ca )channels undergo S-sulfhydration in the presence of NaHS. Although patch-clamp experiments showed that NaHS has negligible effects on the activity of mitoBK(ca) channels, NaHS has been shown to almost fully activate heroin-inhibited mitoBK(ca) channels. The effects of NaHS were mimicked by imidazole, suggesting a common mechanism of activation of mitoBK(ca) channels inhibited by heme/heroin by molecules able to coordinate the iron ion of porphyrin. A set of absorption spectroscopy experiments with the 23 amino acid model peptides containing the heme-binding motif CXXCH suggested previously unrecognized roles of cysteines in heme binding. SIGNIFICANCE STATEMENT The activity of mitochondrial channels including mitoBK(ca) seems to play a significant role in cytoprotection during ischennia/reperfusion. Heroin, which is present in excess during hemorrhage, can potentially bind to and inhibit mitoBK(ca) activity. We found that hydrogen sulfide does not affect mitoBK(ca) activity unless it is blocked by heroin. In this case, hydrogen sulfide activates hemin-inhibited mitoBK(ca) by binding to heroin iron. The hydrogen sulfide effect could be mimicked in patch-clamp experiments by imidazole probably acting by a similar mechanism.
更多
查看译文
关键词
calcium-activated potassium channels,heme/heme metabolism,mitochondria,patch clamp
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要