Decoupled phase modulation for circularly polarized lights via chiral metasurface

ACS PHOTONICS(2022)

引用 0|浏览2
暂无评分
摘要
Metasurfaces are believed as one of the best candidates in nano-optical devices, attributed to the key feasible modulation features of phase, polarization, and local field enhancement by structural designing. However, current methods of propagation- and geometric-phase modulation are interrelated between two eigen spin-states. This means that when the left-handed component phase of a beam is modulated by metasurfaces, its right-handed component phase will change accordingly, which limits the versatility of spin-decoupled applications. In this paper, we experimentally and numerically demonstrate a new phase modulation pathway based on chiral V-shaped holes, which enable fully decoupled one-handed phase modulation of the two eigen spin-states. Two enantiomers are proposed to realize decoupled functions for the two eign-states, e.g., the enantiomer can manipulate the left-handed component phase of a laser beam without changes of the right-handed component. This proposed method has significant meaning in metasurfaces, which can expand the methods of phase engineering.
更多
查看译文
关键词
metasurfaces,photonic spin Hall effect,plasmonics,chirality,nanophotonics,circular dichroism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要