Cognitive Training Modulates Brain Hypersynchrony in a Population at Risk for Alzheimer's Disease

JOURNAL OF ALZHEIMERS DISEASE(2022)

引用 2|浏览3
暂无评分
摘要
Background: Recent studies demonstrated that brain hypersynchrony is an early sign of dysfunction in Alzheimer's disease (AD) that can represent a proxy for clinical progression. Conversely, non-pharmacological interventions, such as cognitive training (COGTR), are associated with cognitive gains that may be underpinned by a neuroprotective effect on brain synchrony. Objective: To study the potential of COGTR to modulate brain synchrony and to eventually revert the hypersynchrony phenomenon that characterizes preclinical AD. Methods: The effect of COGTR was examined in a sample of healthy controls (HC, n = 41, 22 trained) and individuals with subjective cognitive decline (SCD, n = 49, 24 trained). Magnetoencephalographic activity and neuropsychological scores were acquired before and after a ten-week COGTR intervention aimed at improving cognitive function and daily living performance. Functional connectivity (FC) was analyzed using the phase-locking value. A mixed-effects ANOVA model with factors time (pre-intervention/post-intervention), training (trained/non-trained), and diagnosis (HC/SCD) was used to investigate significant changes in FC. Results: We found an average increase in alpha-band FC over time, but the effect was different in each group (trained and non-trained). In the trained group (HC and SCD), we report a reduction in the increase in FC within temporo-parietal and temporo-occipital connections. In the trained SCD group, this reduction was stronger and showed a tentative correlation with improved performance in different cognitive tests. Conclusion: COGTR interventions could mitigate aberrant increases in FC in preclinical AD, promoting brain synchrony normalization in groups at a higher risk of developing dementia.
更多
查看译文
关键词
Cognitive decline, functional neuroimaging, intervention study, longitudinal studies, magnetoencephalography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要