Chrome Extension
WeChat Mini Program
Use on ChatGLM

Imaging and Direct Sampling Capabilities of Nanospray Desorption Electrospray Ionization with Absorption-Mode 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

ANALYTICAL CHEMISTRY(2022)

Cited 11|Views15
No score
Abstract
Nanospray desorption electrospray ionization mass spectrometry, a powerful ambient sampling and imaging technique, is herein coupled as an isolated source with 21 Tesla (21T) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Absorption-mode data, enabled by an external data acquisition system, is applied for improved mass resolution, accuracy, and dynamic range without compromising spectral acquisition rates. Isotopic fine structure (IFS) information is obtained from the ambient sampling of living Bacillus and Fusarium species, allowing for high confidence in molecular annotations with a resolution >830 k (at m/z 825). Tandem mass spectrometry experiments for biological samples are shown to retain the IFS in addition to gained fragmentation information, providing a further degree of annotation confidence from ambient analyses. Rat brain was imaged by nanospray desorption electrospray ionization (nano-DESI) 21T FTICR MS in similar to 5 h using 768 ms transients, producing over 800 molecular annotations using the METASPACE platform and low-parts-per-billion mass accuracy at a spatial resolution of similar to 25 x 180 mu m. Finally, nano-DESI 21T FTICR MS imaging is demonstrated to reveal images corresponding to the IFS, as well as hundreds of additional molecular features (including demonstrated differences as low as 8.96 mDa) that are otherwise undetected by a more conventional imaging methodology.
More
Translated text
Key words
nanospray desorption electrospray ionization,mass spectrometry,absorption-mode
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined