Glioblastoma Cells Counteract PARP Inhibition through Pro-Survival Induction of Lipid Droplets Synthesis and Utilization

CANCERS(2022)

Cited 1|Views22
No score
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most common and deadly primary brain tumor in adults and one of the most aggressive cancers. The use of Poly ADP-Ribose Polymerase (PARP) inhibitors is being expanded as therapeutic alternative in multiple types of cancer beyond BRCA1/2 mutant breast and ovarian cancer. Here we have analyzed glioma cells' traits that limit the efficacy of PARPi as anti-glioma agents and we found that PARPi triggered the synthesis of lipid droplets (LDs) that fueled glioma cells by inducing pro-survival lipid consumption. Notably, blocking Fatty Acids utilization by inhibition of beta-oxidation with etomoxir, increased PARPi-induced glioma cell death while treatment with oleic acid (OA) prevented the anti-glioma effect of PARPi. We uncover a novel mechanism by which glioblastoma escapes to anti-tumor agents through metabolic reprogramming, inducing the synthesis and utilization of LDs as a pro-survival strategy in response to PARP inhibition. Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Poly (ADP-ribose) polymerase inhibitors (PARPi) represent a new class of anti-neoplastic drugs. In the current study, we have characterized the mechanism by which glioblastoma cells evade the effect of PARPi as anti-tumor agents. We have found that suppression of PARP activity exerts an anti-stemness effect and has a dual impact on autophagy, inducing its activation in the first 24 h (together with down-regulation of the pro-survival mTOR pathway) and preventing autophagosomes fusion to lysosomes at later time-points, in primary glioma cells. In parallel, PARPi triggered the synthesis of lipid droplets (LDs) through ACC-dependent activation of de novo fatty acids (FA) synthesis. Notably, inhibiting beta-oxidation and blocking FA utilization, increased PARPi-induced glioma cell death while treatment with oleic acid (OA) prevented the anti-glioma effect of PARPi. Moreover, LDs fuel glioma cells by inducing pro-survival lipid consumption as confirmed by quantitation of oxygen consumption rates using Seahorse respirometry in presence or absence of OA. In summary, we uncover a novel mechanism by which glioblastoma escapes to anti-tumor agents through metabolic reprogramming, inducing the synthesis and utilization of LDs as a pro-survival strategy in response to PARP inhibition.
More
Translated text
Key words
glioblastoma stem cells, PARP inhibitors, lipophagy, lipid droplets, Acyl-coA-carboxylase, metabolic adaptation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined