Generalized Unrelated Machine Scheduling Problem.

SODA(2023)

引用 0|浏览59
暂无评分
摘要
We study the generalized load-balancing (GLB) problem, where we are given $n$ jobs, each of which needs to be assigned to one of $m$ unrelated machines with processing times $\{p_{ij}\}$. Under a job assignment $\sigma$, the load of each machine $i$ is $\psi_i(\mathbf{p}_{i}[\sigma])$ where $\psi_i:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq0}$ is a symmetric monotone norm and $\mathbf{p}_{i}[\sigma]$ is the $n$-dimensional vector $\{p_{ij}\cdot \mathbf{1}[\sigma(j)=i]\}_{j\in [n]}$. Our goal is to minimize the generalized makespan $\phi(\mathsf{load}(\sigma))$, where $\phi:\mathbb{R}^m\rightarrow\mathbb{R}_{\geq0}$ is another symmetric monotone norm and $\mathsf{load}(\sigma)$ is the $m$-dimensional machine load vector. This problem significantly generalizes many classic optimization problems, e.g., makespan minimization, set cover, minimum-norm load-balancing, etc. We obtain a polynomial time randomized algorithm that achieves an approximation factor of $O(\log n)$, matching the lower bound of set cover up to constant factor. We achieve this by rounding a novel configuration LP relaxation with exponential number of variables. To approximately solve the configuration LP, we design an approximate separation oracle for its dual program. In particular, the separation oracle can be reduced to the norm minimization with a linear constraint (NormLin) problem and we devise a polynomial time approximation scheme (PTAS) for it, which may be of independent interest.
更多
查看译文
关键词
scheduling,machine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要