A highly distorted ultraelastic chemically complex Elinvar alloy

NATURE(2022)

引用 78|浏览29
暂无评分
摘要
The development of high-performance ultraelastic metals with superb strength, a large elastic strain limit and temperature-insensitive elastic modulus (Elinvar effect) are important for various industrial applications, from actuators and medical devices to high-precision instruments 1 , 2 . The elastic strain limit of bulk crystalline metals is usually less than 1 per cent, owing to dislocation easy gliding. Shape memory alloys 3 —including gum metals 4 , 5 and strain glass alloys 6 , 7 —may attain an elastic strain limit up to several per cent, although this is the result of pseudo-elasticity and is accompanied by large energy dissipation 3 . Recently, chemically complex alloys, such as ‘high-entropy’ alloys 8 , have attracted tremendous research interest owing to their promising properties 9 – 15 . In this work we report on a chemically complex alloy with a large atomic size misfit usually unaffordable in conventional alloys. The alloy exhibits a high elastic strain limit (approximately 2 per cent) and a very low internal friction (less than 2 × 10 −4 ) at room temperature. More interestingly, this alloy exhibits an extraordinary Elinvar effect, maintaining near-constant elastic modulus between room temperature and 627 degrees Celsius (900 kelvin), which is, to our knowledge, unmatched by the existing alloys hitherto reported.
更多
查看译文
关键词
Mechanical properties,Metals and alloys,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要