N-acylethanolamine acid amide hydrolase is a novel target for drugs against SARS-CoV-2 and Zika virus

Michele Lai,Veronica La Rocca,Rachele Amato, Elena Iacono,Carolina Filipponi, Elisa Catelli, Lucia Bogani, Rossella Fonnesu,Giulia Lottini, Alessandro De Carli,Alessandro Mengozzi, Stefano Masi,Paola Quaranta, Pietro Giorgio Spezia,Giulia Freer, Paola Lenzi,Francesco Fornai, Daniele Piomelli,Mauro Pistello

biorxiv(2022)

引用 2|浏览2
暂无评分
摘要
Several compounds have been tested against SARS-CoV-2; at present, COVID-19 treatments decrease the deleterious inflammatory response and acute lung injury. However, the best therapeutic response would be expected by combining anti-inflammatory properties, while concomitantly blocking viral replication. These combined effects should drastically reduce both infection rate and severe complications induced by novel SARS-CoV-2 variants. Therefore, we explored the antiviral potency of a class of anti-inflammatory compounds that inhibit the N-Acylethanolamine acid amidase (NAAA). This enzyme catalyzes the hydrolysis of palmitoylethanolamide (PEA), a bioactive lipid that mediates anti-inflammatory and analgesic activity through the activation of peroxisome proliferator receptor-α (PPAR-α). Similarly, this pathway is likely to be a significant target to impede viral replication since PPAR-α activation leads to dismantling of lipid droplets, where viral replication of Flaviviruses and Coronaviruses occurs. Here, we show that either genetic or pharmacological inhibition of the NAAA enzyme leads to five-fold reduction in the replication of both SARS-CoV-2 and ZIKV in various cell lines. Once NAAA enzyme is blocked, both ZIKV and SARS CoV-2 replication decrease, which parallels a sudden five-fold decrease in virion release. These effects induced by NAAA inhibition occurs concomitantly with stimulation of autophagy during infection. Remarkably, parallel antiviral and anti-inflammatory effects of NAAA antagonism were confirmed in ex-vivo experiments, within SARS-CoV-2 infected human PBMC cells, in which both viral genomes and TNF-α production drop by ~60%. It is known that macrophages contribute to viral spread, excessive inflammation and macrophage activation syndrome that NAAA inhibitors might prevent, reducing the macrophage-induced acute respiratory distress syndrome and subsequent death of COVID-19 patients. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要