LncRNA HCP5 Participates in the Tregs Functions in Allergic Rhinitis and Drives Airway Mucosal Inflammatory Response in the Nasal Epithelial Cells

Inflammation(2022)

引用 2|浏览11
暂无评分
摘要
Allergic rhinitis (AR) is an allergic disease characterized as (immunoglobulin, IgE)-mediated type I hypersensitivity disorder. Regulatory T cells (Tregs) play a crucial role in AR. In the present study, we aimed to investigate the mechanism of how Tregs are regulated by long noncoding RNA HCP5 and the regulatory role of HCP5 in IL-13-induced inflammatory response in nasal epithelial cells (NECs) from AR patients. Peripheral blood mononuclear cells (PBMCs) and NECs were obtained from collected blood samples and nasal epithelial tissues. CD4 + T cells and Tregs were purified using certain cell isolation kits from PBMCs and Tregs were also differentiated from CD4 + T cells using recombinant human IL-2 and TGF-β. The expression levels of HCP5, miR-16, ATXN2L, GM-CSF, eotaxin, and MUC5AC were detected by real-time PCR and western blot. The concentrations of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The interaction among HCP5, miR-16, and ATXN2L were verified by dual-luciferase reporter assay. lncRNA HCP5 expression dramatically downregulated in PBMCs, CD4 + T cells, Tregs, and nasal tissues of AR patients, as well as in IL-13-treated NECs. HCP5 promoted Tregs differentiation and proliferation via targeting miR-16/ATXN2L axis. Additionally, HCP5 inhibited IL-13-induced GM-CSF, eotaxin, and MUC5AC production in NECs. HCP5 sponged miR-16 and negatively regulated its expression, and miR-16 targeted ATXN2L and inhibition of miR-16 suppressed IL-13-induced GM-CSF, eotaxin, and MUC5AC expression. HCP5/miR-16/ATXN2L axis mediated Tregs proliferation and functions in AR. Besides, the regulation of IL-13-induced dysfunction of NECs by lncRNA HCP5 depended on miR-16/ATXN2L in the inflammatory response of AR.
更多
查看译文
关键词
allergic rhinitis, long noncoding RNA HCP5, miRNA-16, ATXN2L, regulatory T cells, NECs.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要